Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$5^{\prime}, 11^{\prime}$-Dihydrodispiro[cyclohexane-1,6'-indolo[3,2-b]carbazole-12',1"cyclohexane]

Ilia A. Guzei, ${ }^{\text {a* }}$ Lara C. Spencer, ${ }^{\text {a }}$ Eric Codner ${ }^{\text {b } *}$ and Joshua M. Boehm ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and ${ }^{\mathbf{b}}$ Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
Correspondence e-mail: iguzei@chem.wisc.edu, codner@engr.wisc.edu
Received 8 November 2011; accepted 28 November 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.041 ; w R$ factor $=0.113$; data-to-parameter ratio $=13.0$.

The title compound, $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2}$, is a symmetrical 2:2 product from the condensation of indole and cyclohexanone. It is the only reported 5,11-dihydroindolo[3,2-b]carbazole compound in which the spiro atoms are quaternary C atoms. Crystals were grown by vapor diffusion in a three-zone electric furnace. The molecule resides on a crystallographic inversion center. The cyclohexyl rings are in a slightly distorted chair conformation, whereas the indole units and the spiro-carbons are coplanar within $0.014 \AA$.

Related literature

For condensations of indole with cyclohexanone that yield 1:1 or 1:2 products, see: Yadav et al. (2001). For indole-ketone condensation by forming vinylindole followed by a DielsAlder reaction, see: Noland et al. (1993). Recrystallization by the vapor-phase diffusion approach is explained in Kloc et al. (1997). For information on the related compound trans-6,12-diphenyl-5,6,11,12-tetrahydroindolo[3,2-b]carbazole dimethyl sulfoxide tetrahydrofuran solvate, see: Gu et al. (2009). Related compounds were found in the Cambridge Structural Database (Allen, 2002). Geometrical parameters were analyzed using Mogul (Bruno et al., 2002).

Experimental

Crystal data
$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2}$
$M_{r}=394.54$
Monoclinic, $P 2_{1} / c$
$a=7.4655$ (2) A
$b=13.6820$ (4) A
$c=10.5348$ (3) \AA
$V=1015.08(5) \AA^{3}$
$Z=2$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.57 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$\beta=109.380$ (1)
$0.38 \times 0.30 \times 0.19 \mathrm{~mm}$

Data collection
Bruker SMART APEXII area-
20619 measured reflections detector diffractometer
Absorption correction: analytical
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.813, T_{\text {max }}=0.900$
1826 independent reflections 1779 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.113 \quad$ independent and constrained
$S=0.99$
1826 reflections
140 parameters
refinement
$\Delta \rho_{\max }=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 1$	$1.3743(16)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.3872(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$109.12(11)$		

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL, FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

EC thanks Professor Wayland E. Noland for his assistance in initiating this project.

[^0]
organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Gu, R., Van Snick, S., Robeyns, K., Van Meervelt, L. \& Dehaen, W. (2009). Org. Biomol. Chem. 7, 380-385
Guzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Kloc, C., Simpkins, P. G., Siegrist, T. \& Laudise, R. A. (1997). J. Cryst. Growth, 182, 416-427.
Noland, W. E., Wahlstrom, M. J., Konkel, M. J., Brigham, M. E., Trowbridge, A. G., Konkel, L. M. C., Gourneau, R. P., Scholten, C. A., Lee, N. H., Condolucci, J. J., Gac, T. S., Pour, M. M. \& Radford, P. M. (1993). J. Heterocycl. Chem. 30, 81-91.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yadav, J. S., Reddy, B. V. S., Murthy, C. S. V. R., Kumar, G. M. \& Madan, C. (2001). Synthesis, 5, 783-787.

supplementary materials

5',11'-Dihydrodispiro[cyclohexane-1,6'-indolo[3,2-b]carbazole-12',1'-cyclohexane]

I. A. Guzei, L. C. Spencer, E. Codner and J. M. Boehm

Comment

Condensations of indole with cyclohexanone yield a variety of products, often 1:1 or 1:2 structures in which the carbonyl carbon is attached to the 3-position of one or more indole moieties (Yadav et al., 2001). These products are often useful as pharmaceutical intermediates, and a variety of catalysts and reaction conditions have been explored. A particularly interesting example of indole-ketone condensation chemistry is vinylindole formation followed by the Diels-Alder reaction (Noland et al., 1993). While investigating this reaction we isolated highly symmetrical 2:2 condensation products from preparations containing indole and a cyclic ketone (cyclohexanone, tert-butyl cyclohexanone, or cyclopentanone) using hydrochloric acid as a catalyst. These $2: 2$ condensation products possess unusual physical properties for this class of compound, including limited solubility in most solvents, decomposition without melting at temperatures over $300{ }^{\circ} \mathrm{C}$, and fluorescence despite the absence of extended intramolecular conjugation. Due to the lack of a suitable recrystallization solvent we employed the vapor-phase diffusion approach of Kloc et al. (1997) to produce crystals of dispiro[cyclohexane-1,6'(1'H)-indolo[3,2b]carbazole-12'(1H),1"-cyclohexane] (I).

Data mining of the Cambridge Structural Database (CSD; November 2011 update; Allen, 2002) revealed that (I) is the only crystallographically characterized condensation product of indole and cyclohexanone in which the spiro atoms are quaternary carbon atoms.

The molecule of (I) resides on a crystallographic inversion center. The amino hydrogen atoms do not participate in hydrogen bonding interactions due to the lack of acceptors. In contrast, the related compound trans-6,12-diphenyl-5,6,11,12-tetrahydroindolo[3,2-b]carbazole dimethyl sulfoxide tetrahydrofuran solvate (II) which also has hydrogen atoms on nitrogen atoms forms hydrogen bonding interactions with the oxygen atoms of the dimethyl sulfoxide solvent molecules $(\mathrm{Gu}$ et al., 2009).

A Mogul (Bruno et al., 2002) structural check confirmed that the geometrical parameters of (\mathbf{I}) are typical except for the C10-C9-C14 angle. The latter measures $111.20(10)^{\circ}$ and is more obtuse than the average angle of $108.3(9)^{\circ}$ computed for related compounds. The difference is statistically significant. The two cyclohexyl substituents most closely resemble a chair conformation. The 5,11-dihydroindolo[3,2-b]carbazole core is planar within $0.0142 \AA$.

Experimental

Indole (3 g) was dissolved in 25 ml of cyclohexanone. Approximately 0.25 ml of concentrated HCl was added and the mixture was stirred at room temperature for 7-14 days. The resulting pink-white precipitate was isolated using vacuum filtration and washed in refluxing acetonitrile for 60 min .

In an alternative preparation, indole (3 g) and cyclohexanone (2.5 g) were dissolved in 25 ml of acetonitrile. Approximately 0.1 ml of concentrated HCl was added and the mixture was heated to reflux for 24 h . The product was recovered from an accompanying intractable tarry material by washing with acetone followed by reflux in fresh acetonitrile.

supplementary materials

Crystals were grown in a three-zone electric furnace. A 1 g sample of the material was placed on a microscope cover slip and inserted into a 25 mm quartz tube. The tube was placed in the furnace and connected to a supply of argon. The argon flow was adjusted to $2 \mathrm{ml} / \mathrm{min}$, the tube was purged of air and heated in three zones. The first zone contained the initial sample and was heated to $308-310^{\circ} \mathrm{C}$ to promote volatilization. The second zone was the region of molecular transport and was heated to $280-290^{\circ} \mathrm{C}$. The third zone was heated to $200^{\circ} \mathrm{C}$ to encourage crystal deposition. These heating and gas flow conditions yielded needle-shaped crystals approximately $500 \mu \mathrm{~m}$ in the short dimensions and $10-15 \mathrm{~mm}$ long over 14 h .

Refinement

All H -atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients U îso $(H)=1.2$ times U eq(bearing atom). Default effective $X-\mathrm{H}$ distances for $\mathrm{T}=-173.0^{\circ} \mathrm{C}$ $\mathrm{C}\left(s p^{3}\right)-2 \mathrm{H}=0.99, \mathrm{C}\left(s p^{2}\right)-\mathrm{H}=0.95$. The hydrogen atom attached to N 1 was located in the difference map and refined independently.

Figures

5',11'-Dihydrodispiro[cyclohexane-1,6'-indolo[3,2-b]carbazole-12',1'-cyclohexane]

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2}$
$M_{r}=394.54$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.4655$ (2) \AA
$b=13.6820$ (4) \AA
$c=10.5348$ (3) \AA
$\beta=109.380(1)^{\circ}$
$V=1015.08(5) \AA^{3}$
$Z=2$
$F(000)=424$
$D_{\mathrm{x}}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 9920 reflections
$\theta=5.5-67.3^{\circ}$
$\mu=0.57 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.38 \times 0.30 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
$0.50^{\circ} \omega$ and $0.5^{\circ} \varphi$ scans

1826 independent reflections
1779 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\max }=67.7^{\circ}, \theta_{\min }=5.5^{\circ}$

Absorption correction: analytical (SADABS; Bruker, 2007)

$$
T_{\min }=0.813, T_{\max }=0.900
$$

20619 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.113$
$S=0.99$

1826 reflections
140 parameters
0 restraints

$$
\begin{aligned}
& h=-8 \rightarrow 8 \\
& k=-16 \rightarrow 16 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0708 P)^{2}+0.5526 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.79965(15)$	$0.12731(8)$	$0.03500(11)$	$0.0165(3)$
H1	$0.837(2)$	$0.1597(11)$	$-0.0234(16)$	$0.017(4)^{*}$
C1	$0.87673(18)$	$0.13818(9)$	$0.17213(13)$	$0.0164(3)$
C2	$1.02992(18)$	$0.19577(9)$	$0.24794(13)$	$0.0182(3)$
H2	1.0995	0.2347	0.2059	0.022^{*}
C3	$1.07633(18)$	$0.19384(9)$	$0.38671(13)$	$0.0191(3)$
H3	1.1790	0.2324	0.4410	0.023^{*}
C4	$0.97353(19)$	$0.13558(9)$	$0.44782(13)$	$0.0190(3)$
H4	1.0083	0.1353	0.5431	0.023^{*}
C5	$0.82312(18)$	$0.07871(9)$	$0.37278(13)$	$0.0173(3)$
H5	0.7556	0.0394	0.4160	0.021^{*}
C6	$0.77079(18)$	$0.07954(9)$	$0.23203(13)$	$0.0157(3)$
C7	$0.62336(17)$	$0.03331(9)$	$0.12319(12)$	$0.0154(3)$

C8	$0.64558(17)$	$0.06437(9)$	$0.00578(13)$	$0.0151(3)$
C9	$0.47366(17)$	$-0.03714(9)$	$0.13577(12)$	$0.0153(3)$
C10	$0.57699(18)$	$-0.12878(9)$	$0.21510(13)$	$0.0170(3)$
H10A	0.6210	-0.1696	0.1537	0.020^{*}
H10B	0.6910	-0.1065	0.2886	0.00^{*}
C11	$0.45854(19)$	$-0.19262(9)$	$0.27583(13)$	$0.0189(3)$
H11A	0.3571	-0.2254	0.2027	0.023^{*}
H11B	0.5403	-0.2438	0.3329	0.023^{*}
C12	$0.3696(2)$	$-0.13171(10)$	$0.36026(13)$	$0.0217(3)$
H12A	0.4709	-0.1009	0.4354	0.06^{*}
H12B	0.2941	-0.1746	0.3990	0.026^{*}
C13	$0.24144(19)$	$-0.05256(10)$	$0.27410(13)$	$0.0194(3)$
H13A	0.1855	-0.0135	0.3306	0.023^{*}
H13B	0.1362	-0.0837	0.2020	0.023^{*}
C14	$0.35216(18)$	$0.01490(9)$	$0.21105(13)$	$0.0172(3)$
H14A	0.4375	0.0562	0.2831	0.021^{*}
H14B	0.2607	0.0589	0.1468	0.021^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0180(6)$	$0.0177(6)$	$0.0138(6)$	$-0.0033(4)$	$0.0054(4)$	$0.0008(4)$
C1	$0.0180(6)$	$0.0154(6)$	$0.0148(6)$	$0.0033(5)$	$0.0041(5)$	$0.0004(5)$
C2	$0.0191(7)$	$0.0160(6)$	$0.0192(7)$	$-0.0008(5)$	$0.0058(5)$	$0.0009(5)$
C3	$0.0178(6)$	$0.0174(6)$	$0.0181(7)$	$-0.0022(5)$	$0.0007(5)$	$-0.0022(5)$
C4	$0.0214(7)$	$0.0188(7)$	$0.0149(6)$	$0.0021(5)$	$0.0036(5)$	$-0.0005(5)$
C5	$0.0196(6)$	$0.0158(6)$	$0.0166(6)$	$0.0006(5)$	$0.0063(5)$	$0.0002(5)$
C6	$0.0160(6)$	$0.0130(6)$	$0.0183(6)$	$0.0021(5)$	$0.0061(5)$	$-0.0006(5)$
C7	$0.0156(6)$	$0.0147(6)$	$0.0144(6)$	$0.0027(5)$	$0.0032(5)$	$-0.0015(5)$
C8	$0.0140(6)$	$0.0133(6)$	$0.0177(6)$	$0.0008(4)$	$0.0050(5)$	$-0.0007(5)$
C9	$0.0171(6)$	$0.0151(6)$	$0.0138(6)$	$0.0007(5)$	$0.0055(5)$	$0.0003(5)$
C10	$0.0178(6)$	$0.0167(7)$	$0.0152(6)$	$0.0004(5)$	$0.0039(5)$	$-0.0008(5)$
C11	$0.0223(7)$	$0.0159(6)$	$0.0159(6)$	$-0.0017(5)$	$0.0030(5)$	$0.0019(5)$
C12	$0.0276(7)$	$0.0224(7)$	$0.0169(6)$	$-0.0049(5)$	$0.0099(6)$	$0.0016(5)$
C13	$0.0204(7)$	$0.0224(7)$	$0.0176(6)$	$-0.0027(5)$	$0.0090(5)$	$-0.0032(5)$
C14	$0.0191(6)$	$0.0169(6)$	$0.0158(6)$	$-0.0002(5)$	$0.0060(5)$	$-0.0013(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.3743(16)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.3872(16)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.876(17)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4001(18)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.4137(18)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3862(19)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.4024(19)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500

$\mathrm{C} 9-\mathrm{C} 8^{\mathrm{i}}$	$1.5080(17)$
$\mathrm{C} 9-\mathrm{C} 14$	$1.5608(16)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.5612(17)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.5264(17)$
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9900
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9900
C11-C12	$1.5227(19)$
C11-H11A	0.9900
C11-H11B	0.9900

sup-4

supplementary materials

C4-C5	1.3791 (18)
C4-H4	0.9500
C5-C6	1.4026 (18)
C5-H5	0.9500
C6-C7	1.4452 (17)
C7-C8	1.3690 (18)
C7-C9	1.5146 (17)
C8-C9 ${ }^{\text {i }}$	1.5080 (17)
C1-N1-C8	109.12 (11)
C1-N1-H1	124.3 (10)
C8-N1-H1	126.3 (10)
N1-C1-C2	129.67 (12)
N1-C1-C6	107.86 (11)
C2-C1-C6	122.47 (12)
C3-C2-C1	117.50 (12)
C3-C2-H2	121.2
C1-C2-H2	121.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.77 (12)
C2-C3-H3	119.6
C4-C3-H3	119.6
C5-C4-C3	121.54 (12)
C5-C4-H4	119.2
C3-C4-H4	119.2
C4-C5-C6	119.31 (12)
C4-C5-H5	120.3
C6-C5-H5	120.3
C5-C6-C1	118.40 (11)
C5-C6-C7	134.98 (12)
C1-C6-C7	106.61 (11)
C8-C7-C6	106.99 (11)
C8-C7-C9	126.21 (11)
C6-C7-C9	126.79 (11)
C7-C8-N1	109.41 (11)
C7-C8-C9 ${ }^{\text {i }}$	127.44 (12)
N1-C8-C9 ${ }^{\text {i }}$	123.14 (11)
C8 ${ }^{\text {i }} \mathrm{C} 9-\mathrm{C} 7$	106.34 (10)
C8 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{C} 14$	111.30 (10)
C7-C9-C14	108.92 (10)
C8 ${ }^{\text {i }}$ - $9-\mathrm{C} 10$	110.83 (10)
C7-C9-C10	108.06 (10)
C8-N1-C1-C2	-178.37 (13)
C8-N1-C1-C6	0.86 (13)
N1-C1-C2-C3	179.13 (12)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.01 (19)
C1-C2-C3-C4	0.44 (19)
C2-C3-C4-C5	-0.2 (2)

C12-C13	1.5282 (19)
C12-H12A	0.9900
C12-H12B	0.9900
C13-C14	1.5299 (17)
C13-H13A	0.9900
C13-H13B	0.9900
C14-H14A	0.9900
C14-H14B	0.9900
C14-C9-C10	111.20 (10)
C11-C10-C9	115.59 (10)
C11-C10-H10A	108.4
C9-C10-H10A	108.4
C11-C10-H10B	108.4
C9-C10-H10B	108.4
H10A-C10-H10B	107.4
C12-C11-C10	110.94 (11)
C12-C11-H11A	109.5
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
C12-C11-H11B	109.5
C10-C11-H11B	109.5
H11A-C11-H11B	108.0
C11-C12-C13	110.44 (10)
C11-C12-H12A	109.6
C13-C12-H12A	109.6
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.6
C13-C12-H12B	109.6
H12A-C12-H12B	108.1
C12-C13-C14	111.31 (10)
C12-C13-H13A	109.4
C14-C13-H13A	109.4
C12-C13-H13B	109.4
C14-C13-H13B	109.4
H13A-C13-H13B	108.0
C13-C14-C9	115.74 (10)
C13-C14-H14A	108.3
C9-C14-H14A	108.3
C13-C14-H14B	108.3
C9-C14-H14B	108.3
H14A-C14-H14B	107.4
C9-C7-C8-C9 ${ }^{\text {i }}$	0.9 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	-0.72 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9^{\text {i }}$	179.29 (11)
C8-C7-C9-C8 ${ }^{\text {i }}$	-0.78 (18)
C6-C7-C9-C8 ${ }^{\text {i }}$	-179.97 (11)
C8-C7-C9-C14	-120.82 (13)

supplementary materials

C3-C4-C5-C6	-0.40 (19)	C6-C7-C9-C14	59.99 (15)
C4-C5-C6-C1	0.80 (18)	C8-C7-C9-C10	118.26 (13)
C4-C5-C6-C7	-178.16 (13)	C6-C7-C9-C10	-60.93 (15)
N1-C1-C6-C5	-179.91 (11)	C8i-C9-C10-C11	-82.20 (13)
C2-C1-C6-C5	-0.61 (18)	C7-C9-C10-C11	161.65 (10)
N1-C1-C6-C7	-0.68 (13)	C14-C9-C10-C11	42.16 (14)
C2-C1-C6-C7	178.62 (11)	C9-C10-C11-C12	-52.32 (14)
C5-C6-C7-C8	179.29 (14)	C10-C11-C12-C13	59.53 (14)
C1-C6-C7-C8	0.25 (13)	C11-C12-C13-C14	-58.68(14)
C5-C6-C7-C9	-1.4 (2)	C12-C13-C14-C9	50.47 (14)
C1-C6-C7-C9	179.57 (11)		82.87 (13)
C6-C7-C8-N1	0.27 (14)	C7-C9-C14-C13	-160.20 (10)
C9-C7-C8-N1	-179.06 (11)	C10-C9-C14-C13	-41.22 (14)
C6-C7-C8-C9 ${ }^{\text {i }}$	-179.73 (11)		

Fig. 1

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2127).

